COMPARTMENTAL COmputations W. RALL

RECORD

Do computations involoang sustained and brief inturtitions for $\beta=0.1$

$$
\begin{aligned}
& \text { i. Companion } \\
& \text { compar mo } 11=100 \\
& 12=-10
\end{aligned}
$$

Use ΔT and $\tau \mu_{11}=1+\varepsilon+g$

$$
\tau \mu_{i j}=\left(\frac{1}{4 z a}\right)^{2}=\left(\frac{1}{-04}\right)=25
$$

Could use 5 compartments plus Two and view remelts in all fire compost mends. Use new data pout generation method.

$$
\begin{array}{ccc}
30 & \xi & 0 \\
A & g & 0
\end{array}
$$

?Ratio temporal patterns
Ifirst con produce some local knock
ant neal \& alone couther

Moves proper with Schoenfeld 1956 p.1363 Eq. (17)

Suppose $q_{i}(0) \neq 0$ only for $i=1$ क we watch tRansient in k th cpl.

$$
q_{k}(t)=\sum_{j}^{1} A_{k_{j}} e^{-\alpha_{j} t}
$$

where $A k_{j}=\left\{\left\{\frac{\Delta_{1 n}(p)}{\Delta(p)} q_{1}(0)\right\}\left[p+\alpha_{j}\right]\right\}_{p=-\alpha_{j}}$
This dues met
tree multiple roots.
Now, fa each j expect that $A_{1 j}$ is The same for I. C, in k Th.

$$
\begin{aligned}
& \text { is. } q_{1}(t)=\sum_{j} A_{1 j} e^{-\alpha_{j} t} \quad \text { sum } x_{j} \\
& \text { where } A_{i j}=\left\{\left\{\Delta_{k 1}\right.\right.
\end{aligned}
$$

W. Roll

National tus tilutes of tyalth Bethesda, Marylanel

$$
\text { Belg } 31,9 A 23
$$

Comparturental Computations Record

Witprid Roll
This necord begun Moy 7, 1963, but retrocture to July 1962, besed on loose notesfrom that period.
From Moy 1963 onworly, this hecome conputations diary Book' 2

Berman-Weiss
NIH-OMR Compriter Progrom 9 B19 revised "feb1963 to umilor 9820

$$
\begin{aligned}
& 722.001 \text { BIF.TREE } \\
& 723.001 \text { ADDBR.TREE }
\end{aligned}
$$

Data cards were set up by Maj. Weiss from my outlines ot were sum as prelunin any problems
assumptions were

$$
\begin{aligned}
\Delta Z & =0.2 \\
\Delta T & =0.1 \\
>\lambda_{i i} & =0.1 \\
\lambda_{i j} & =0.5
\end{aligned}
$$

This was a mistake $\frac{\Delta T}{\Delta z}=\frac{0.1}{0.2}=0.5$ where it should hove been $\frac{\Delta T}{(\Delta t)^{2}}=\frac{0.1}{0.04}=2.5$

$$
\begin{aligned}
\lambda_{i j}=0.5 \text { with } \lambda_{0 i}=0.1 \text { implies }(\Delta z)^{2} & =0.2 \\
\text { or } \Delta Z & =0.447
\end{aligned}
$$

Tu there problems, used only initial condition in coniporturents $1,2,3 \times 4$. Not perturbations.

Orignially had intended 18 compartmonts as belor, bis found this wos too mueh forprogran

722.001 RALL.BIF. TREE
el)

722.001 RALL. BIF. TREE
(Bifurcatrig tree model)

$$
8 e^{2}
$$

i

These two problems establoshed feasibility. Correction of $A_{i j}$ and handling of perturbations came about two mont is Rater.

$$
\begin{aligned}
& \frac{\partial V}{\partial T}=-V+\frac{\partial^{2} V}{\partial Z^{2}} \\
& \frac{\Delta V_{2}}{\Delta T}=-V_{2}+\left[\frac{\frac{V_{3}-V_{2}}{\Delta z}-\frac{V_{2}-V_{1}}{\Delta z}}{\Delta z}\right] \\
& =-V_{2}-\frac{2 V_{2}}{(\Delta z)^{2}}+\frac{V_{1}+V_{3}}{(\Delta z)^{2}} \\
& \Delta V_{2}=-\left\{\Delta T+\frac{2 \Delta T}{(\Delta z)^{2}}\right\} V_{2}+\left(\frac{\Delta T}{(\Delta z)^{2}}\right)\left(V_{1}+V_{3}\right) \\
& \underbrace{\uparrow_{\lambda_{02}}}_{\lambda_{22}} \hat{\lambda}_{i j}
\end{aligned}
$$

Hones' program deals with quantity or charge Q not concentration or voltage, $V \propto Q$ only if all compartments hove same capacity

$$
\begin{aligned}
& \text { N } \\
& \frac{V 86}{25}+V-=\frac{V 6}{18}
\end{aligned}
$$

$$
\begin{aligned}
& 3(8)+\frac{5 x}{2+2}-7-=
\end{aligned}
$$

Y23.001 RALh. ADDBR.TREE miz)) Rum

Y23.001 RAWh.ADDBR.TREE (add-a-branch type of Ganching)

$(2 x+5+x+2(x+0-1+0)$
$(2+2)+2(2)$
730.007 RALL. EQUIV.CYL

Puppose was to test nuthod apanist Fiss 749 of NiY, Acad. Pejer.
Result coos to dis cover error in Aij o alao errors haudluig perturbations.

* Sonnce compartment is pept const. by setting up depenlence relation such that its oont λ is sinm of λ into it.

Firstrum was $9 / 21 / 62$
ersorsinisot-up
need fictitions obsew-d values to setp ber
Secouldrun was 9/25/62
ersorsinin Tivie change mulbing

* if zro type thin change, time nesterts from zero

Suigepprge plothuy option - maytinue scabd to 50 double page 'c II was 111 , latichenged to 110 Tor ordviates, showid ret ohs. Cunnuy to 90 Reoults led to 730.0%, watf poop.

Sum of squares in coupt. (1) coldent wos sinaller with $\chi_{i j}=5.0$
Howear $\lambda_{i j}=4.903$ or 4.93
succed in refucuig surn oft squereas of it as nuch at told end.
730.071 RALL. EqUIV. CYL

This makes use of data fitting feature of
Move's pogrom to five ar it whine fit the curves of N.Y, Claudel proper.
08. 2,1962 तij began at 0.5 ± 0.3; went to 0.8

QQ. 3,1962 sum began with $\lambda_{i j}=0.8$ range 0.8 to 2
ween all the way to 2.
OD, 3,1962 semen with $7_{i j}=2$
wen to λ if lent 4.03 .
q got excellent fit.
Od. 18 nom begenwith $\lambda_{i y}=5.0$; got 4.9036
This proved need for $\lambda_{i j}=\frac{\Delta T}{(\Delta Z)^{2}}$

$$
\text { for } \begin{aligned}
& \Delta T=0.05 \\
& \Delta Z=0.1 \\
& \frac{\Delta T}{\Delta Z)^{2}}=\frac{.05}{.01}=5
\end{aligned}
$$

active $\lambda_{0 i}=0.15$
Posture Ni $=0.05$

$$
\begin{aligned}
& \lambda_{\text {oj parpore }}=.05 \\
& \lambda_{\text {oj patui }}=-10 \\
& \lambda_{i j}=1.25 \quad \text { for } \Delta Z=0.2 \\
& \angle T=0.05
\end{aligned}
$$

I.C. an sonrce cpt was 100 . oles. May was 45.
May time was 50. wothoftion 4

Equir.Cyl.

Here attempted spatio temporal sequence, lit SNAF UV Parameter changes did not work correctly because A did not know that after a tine charge, as long as one new para. is specified all not specified revert to the orisuial vales, not the previous values.
Also souse compatinent was not not vest used dependence relation for not yet used dependence relation for λ some.
Solution is that $\lambda_{\text {save }}=\sum_{j} \lambda_{\text {yijsingee }}$ and zero time vales of parameters should all he passive values

This all nou-possere values made explrit.

* Cetus to passive alurys requires one exp land
to avoid contiminatos width prion values.

Studied Matrix
9 compertinents phas (10)for \& sormee
Piagorral elements
atteminalsoftree, $\lambda_{i i}=\frac{\Delta T}{(\Delta z)^{2}}+\Delta T+\lambda_{i, 10}+\lambda_{i i \theta}$
Tor elements in line, $\lambda_{i i}=2\left(\frac{\Delta T}{(\Delta Z)^{2}}\right)+\Delta T+\lambda_{i, 0}+\lambda_{i ; 4}$
athonch pounts, $\lambda_{i i}=3\left(\frac{\Delta T}{(\Delta z)^{2}}\right)+\Delta T+\lambda_{i, 0,}+\lambda_{i i 1}$ This is with all cpte of same size If $\sum_{i} d^{3 / 2}=$ const (is. $K=0$) Then bearin mind that Mores prog. isfor Q Each branching yoilds a sunaller conpartiont Cohoch neona smaller I.C. and semaller λ_{i}, sonnce. Also $\lambda_{i j}$ where i is sualler compartions innst be reduced proportionatety. used this later, succenfully in $722 \cdot 500$ series
722.011 BIF.TREE

$$
\begin{array}{ll}
\Delta T=0.05 & \lambda_{i j}=\frac{.05}{.04}=1.25 \\
\Delta z=0.2 & \lambda_{\text {opurive }}=0.05 \\
& \text { तogecture }=0.015
\end{array}
$$

still did not have dependence relation forsurce ie. as with 730.102 leamedthishore Falsoparameter changes.
Negative plotted values were the calve that led to Solution of trouble. The source conpetan went negative in one of these.

$$
11 / 2 / 62
$$

This day initiated followion regince
(1) Initial λ set-up all with possive volues
(2) $\lambda_{0, \text { source }}=-\sum_{j} \lambda_{j \text { sounce }}$
such that $\lambda_{\text {somee, source }}=0$
at all Fimes
(3) all parameter changes nowst now be staled as explicit perturtation.
(4) retur to passore set requires
ore explict pasive card. one explidt passire ahd. (Trin wasslestued oniff $11 / 8 / 62$)
(5) For every zesolype time change it is necessary to recharge the source inifial condietion

Computed time course in (8)

$$
\begin{aligned}
& \lambda_{0 \text { pa rive }}=0.05 \\
& \lambda_{0} \text { active }=0.15 \\
& \lambda_{\text {Qatar sanaa }}=0.10 \\
& \lambda_{i j}=1.25 \quad \text { for } \begin{aligned}
& \Delta T \Delta .05 \\
&\Delta Z)^{2}=0.04
\end{aligned} \\
& \Delta Z=0.2
\end{aligned}
$$

Began New Bifitree Series $11 / 2 / 62$ 722.200 BIF. TREE Series
$11 / 8 / 62$ tests failed to setum toprosione parameters because dod not use prossone card
also, used oz, value 45.
Plot option 4
Jest time value 25.
This plotted with correct spacing, except that one should gone lan explicit zerqtiniz vale of ter each zero type tine charge control
card.
11/9/62 tests worked because of porsovecond also doubled scale of plotting by setting

Observe in comprartnoen 8
A is first perturbation
This n in from $T=0$ then $T=5$
and is the followed (preserve) to $T=20$
B is second perturbation
This is on from $T=0$ thru $T=5$ and is then followed (fronvere) $t=20$
C is I.C. for finial transient followed to $T=27.5$

Note: $E_{j}=E_{r}$ throughout

$$
\begin{aligned}
& \begin{array}{rrrr}
& \begin{array}{cc}
A & B \\
& 722.201
\end{array} \quad 11 / 9 / 62 & C & C \\
& & \text { in } 1,2,3,4 & \text { in } 1
\end{array} \\
& \begin{array}{rllll}
722.202 & 11 / 9 / 62 & \varepsilon=2 & \varepsilon=2 & \text { F. }_{1} C_{1} \\
& \text { in } 142 & \text { in } 1+4 & \text { in } / 1+2
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 722.204 \quad 11 / 13 / 62 \quad I_{1} C_{0 . m i l} 1 \$ 2 \quad I_{1} C_{0 i n} 1 / 2 \text { I.C. } \\
& y=2 \text { in } 3+4 \quad g=2 \text { in } 5+7 \quad 5+6 \\
& 7220205 \quad 11 / 15 / 62 \quad \varepsilon=2 \mathrm{mil} \quad \varepsilon=2 \mathrm{mil} \quad I C_{1}+2 \\
& \begin{array}{lll}
y=2 \text { in } 2 & y=2 \text { in } 4 & y=2 \\
\text { (sustained) } & \text { (sustaniel) } & \text { in } 1+2
\end{array} \\
& 722.206 \quad 11 / 15 / 62 \quad \varepsilon=2 \text { in } 1 \quad \varepsilon=2 \text { in } 1 \quad \text { I..iml } \\
& \begin{array}{lll}
y=2 \text { in } 5 & y=2 \text { in } 7 & y=2 \\
(\text { triof }) & (\text { inef }) & \text { in } 2
\end{array} \\
& 722.207 \text { A } 11 / 15 / 62 \text { goof goof } \begin{array}{l}
I_{1} C_{1} \text { in } 1 \\
y=2 \text { mi } 1
\end{array} \\
& 722.207 \text { B } 11 / 16 / 62 \quad \varepsilon=8 \text { inl } \quad \varepsilon=2 \mathrm{inl} \quad \text { f.cimil } \\
& \begin{array}{c}
g=2 \mathrm{mil} \\
(\text { pusstained) }
\end{array} f=2 \mathrm{mi} 4
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llll}
722.209 & 11 / 16 / 62 & \varepsilon=2 \mathrm{mil} & \varepsilon=2 \mathrm{mil} \\
& g=2 \mathrm{~m} 2 & g=2 \mathrm{~m} 4 & I_{1} C \cdot \mathrm{mil} \\
& (\text { biof }) & (\text { biof }) &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 722.211 \quad 11 / 20 / 62 \quad \varepsilon=2 \mathrm{~m} / \quad \varepsilon=2 \mathrm{~m} / \quad I_{1} C_{i} \mathrm{~m}_{1} \\
& \begin{array}{ll}
g=2 \text { in } 8 & g=2 \text { in } 8 \\
(\text { brie }) & \\
\text { (sustained) }) & y=2 \text { mis }
\end{array} \\
& 722.212 \quad 11 / 20 / 62 \quad \varepsilon=4 \mathrm{mil} \quad \varepsilon=2 \mathrm{mil} \text { Ficmil } \\
& g=2 \text { in } 1 \quad f=2 \text { in } 57 \\
& \text { (brief) }
\end{aligned}
$$

Fineosity of Peals in 8 11/21/62 for perturbatuois E miperiphery

$$
\begin{aligned}
& \varepsilon=2 \mathrm{in} \text { (1) gives peak }=3.40385 \\
& \varepsilon=4 \cdots \cdots \quad=6.23517 \quad 1.83 \\
& \varepsilon=8 \cdots \cdots \quad=10.6348 \quad 3.12 \\
& \varepsilon=2 \text { in (1) }+(2) \\
& 6.60179 \\
& 1.94 \\
& \varepsilon=2 \text { in (1) }+(4) \\
& 6.74025 \\
& 1.99 \\
& \varepsilon=2 \mathrm{~m}(0,(2),(5) x(t) \\
& 13.0574 \quad 3.84
\end{aligned}
$$

for briof intiotition of, simultanioas
wothe

$$
\begin{array}{cl}
\text { Control } & 3.40385 \\
1 & 3.11758 \\
5 & 3.25186 \\
2 & 3.3009 \\
7 & 3.3266 \\
8 & 3.34839 \\
4 & 3.38512
\end{array}
$$

Note $E_{j}=E_{r}$ thronghont

$$
722.2
$$

Sustained Suhrtition of Peole ot (8) fordofferent sitos of futhitution

Remarboble that a sustained in 1 is moneffetwe Than in 8 . perhops becouse porsone $\lambda_{11}<\lambda_{88}$ Celso That 5 is nore seflective than \%.
see 7216239 7/r/63.
Thes get reversed for $\sum_{\text {gel }} \mathrm{d}^{3} / 2=$ Coust.
ni 722.500 series. only when \& was not adjusted for camplis size.
$=3$ (1) Letr thon (8)

all $\lambda_{i j}=1.25$
uxcept for $\lambda_{6,9}=\lambda_{59}=\lambda_{46}=\lambda_{36}=\lambda_{25}=\lambda_{15}=0.625$
Also I.C. were 12.5 here
inster of 50 in 722.200 serieo
Amplitudes came on soughly half
those in 722.200 serien
ie total minhi conductance in (1) was only
ni(5) it wes $1 / 2$ thatin (7or (8)

See 722.530 series in May 1963
722.500 Series

$$
11 / 7-29 / 62
$$

1.568 in control

Note that (5) is lens effective than (1)
Probdely onglit to collect on flow
Here Gi $\triangle A$ was not tho sam $5 / 8 / 63$, in
Here Gj $\triangle A$ was notfent positions $\lambda_{i j}$ were set equal to unequal Maj; hairy to incorrect
Ai etc.

Begin 430.900 series $11 / 2 / 62$ Equivalyt Cyliider - Ten Compantmento spatio- Aemporal pallerm
$11 / 8 / 62$ sums were erroneous becanse did notget cosrect posivie decay.
730.901 thrm $730.910 B$
see table next twoproges
Used $\Delta t=1$ really corserp to $.05 \tau$

$$
\begin{aligned}
& \therefore \quad \lambda_{0 i}= 0.05 \\
& \lambda_{i j}=1.25 \text { conerpto } \Delta Z=0.2 \\
& \text { ie. } \frac{.05}{(.2)^{2}}=1.25
\end{aligned}
$$

At for perturtations wos 5 steps.
or 0.25 亿 or 0.25 亿
Compainnewil was source confoy set at 100 . TC perturbatons vade explizet sel to possive onginal volues.

Results computes in compartments (1) and (10)
Date Prob.No.
Lt.
Δt_{2}

$11 / 199 / 62$
il $/ 19 / 62$
1 $/ 19 / 62$
i $/ 19962$
$11 / 19 / 62$
$730.906 B$
$\varepsilon=1$ in $5+6$ for Nt,
$.907 B \quad$ E= 1 in 405 hat,

$\varepsilon=1$ in 243 for $\begin{aligned} & t_{1} \\ & \varepsilon=1\end{aligned}$
.910 B
$\varepsilon=1 \mathrm{~min} 485$ for $\Delta t_{\text {, }}$
$\Delta t_{3} \quad \Delta t_{4}$ frial time V
$\varepsilon=1 \min 647 \quad \varepsilon=1 \operatorname{mis} 99 \quad$ possine \quad p

$\varepsilon=1$
porsone forpeal passive
$\varepsilon=1$
passire possive
for all fowr Δt [sineared control]
with $g=1$ in $1,2,3,4$ throughont and $\varepsilon=1, \Delta 2+3$ for Δt_{2}, then possove pasoure Δt_{2}, then $\varepsilon=1$ mi $2+3$ for $k t_{3}$, then passove with of $=1$ mis 89 tharoughont

This wed first use of data point
generation System 200. Δt
$11 / 15 / 62$
$11 / 16 / 62$
$11 / 20 / 62$
$11 / 29 / 62$
$12 / 162$

Begin 730.920 Series $11 / 15 / 62$
Ten Compartuental Equiv. Cylnider $\varepsilon=1$ mis $5+6$
Drfferent locations of g
$730.921 \quad \varepsilon=1$ ai 576 control Somre 100
$\begin{aligned} & 730.922 \quad \begin{array}{l}\varepsilon\end{array}=1 \text { in } 576 \\ & \text { and }=1 \text { in } 3+4 \\ & z=1=1\end{aligned}$ $E_{j}=0$

$730.924\left[\begin{array}{l}\varepsilon=1 \text { nis } 56, \text { brif }, 10,6 \\ \text { ollowid ly } j=10 \mathrm{mi}, 6\end{array}\right] 500$
730.800 Serves

Ten Compartmental Equiv-.Cyl,
50:50 Ef of splits.
Soure Compt set at 100
$11 / 20 / 62 \quad 730.801$

$$
\begin{aligned}
& \varepsilon=1 \mathrm{im} 1,2,3,4,5 \text { biof } \\
& \delta=1 \mathrm{im} 1,2,3,4,5 \text { scstamd }
\end{aligned}
$$

$11 / 20 / 62 \quad 730.802$

$$
\begin{aligned}
& \varepsilon=1 \mathrm{im} 1,2,3,4,5 \text { brif. } \\
& g=1 \mathrm{mi} 6,7,8,9,10 \text { sunt. }
\end{aligned}
$$

solp.til

$$
\operatorname{lic}_{2}
$$

$0012+2+2+2020$

Break for Trip to L. A,
topresen materiol
Mansscops coritten in Febo Mar 1963

No more compritations until Uoy 1963

May 1963
Plan to begin new Series 731.000

$$
\text { and } 731.100
$$

Purpose to elucidate untrititory location mbronching system.
Approach: (i) Use unimimal branching systern
(2) Collect "out" lealrage
(3) Do first for musts Thenfor square pulse.
tuproved Methods
(1) Use data point generating soystern
(2) moke all other $\lambda i j$ dependent won first. This permits early shift of ΔZ
(3) use $\lambda_{i j}=2 \mu_{i j} \frac{c_{i}}{c_{j}}=\left(\frac{1}{\Delta z}\right)^{2} \frac{c_{i}}{c_{j}}$ and express Δ it steps as $\Delta t / \tau$
(4) Wake λ_{0} explicitly dependent $=1+\varepsilon+g$ arcollectavionson of for squeal ate. $=1+\lambda_{i \varepsilon}+\lambda_{i y}$
731.001

Begir with I.C. $=90$. in (1)

$$
\Delta z=0.5 \text { goving } \lambda_{i j}=\varepsilon_{u_{i j}} \frac{c_{i}}{c_{j}}=4 .
$$

Resting $\lambda_{H, 1}=\lambda_{12,2}=\lambda_{13,3}=\lambda_{14,4}=1$.
Perturtationons refersed to sesting volues For $E_{j}=E_{r}$, simply expess

$$
\begin{gathered}
\text { e.g. } \lambda_{1,1}=1 .+(\text { sertingudne })+\theta \\
\Delta T=0.02
\end{gathered} \quad \text { used } q=5
$$

731.001 .0 I.C.mi(i), Contral with no f

$$
\begin{equation*}
731.001 .1 \tag{1}
\end{equation*}
$$

"
with $g=5$
731.001 .2
${ }^{\prime \prime}$
"
731.001 .3

1
731.001 .4 "
May. wars took to ABS for punchnig cutpont obtamied $5 / 16 / 63$

$$
100.18)^{1}
$$

$$
.1=4 x_{1} h=88 k=+8 k=k
$$

$$
\begin{aligned}
& 0+0+0)=+2.80-0.8
\end{aligned}
$$

(1)

(ह) 31420 हो $1+0020$
(11)
731.001 .0 them 1.4

Successful rum
Most striking vault due to symmetry. Tronsiont in compartment (4) is identical for $\left\{\begin{array}{l}g=5 \mathrm{in} \text { (1) } \\ g=5 \mathrm{in}(4)\end{array}\right.$ all through transients in the other compriturents differ in these two cases
This can be understood as

These ting involve same location, with I.C. (S) miterchanged cost h observation compartment. Thoreen o/which jim has an moth. proof. Viones relates primiple to Theomin
die
 and

Sur otherwords, for this case o/perfect
symmetry, of located of I.C
of located at recording cpl. are equally effective, which explains paradoxical results ob tamed cashier with trees.

Two paths of pursuit
(a) see ifget some with \& perturb. this will come on of 731.100 series
(b) destroy symmetry by shifting $\times 4,3$

Hurst gavebiof quantitotne summary of results, next page.

$$
\sqrt{4}_{3}^{(1)}
$$

731.001

$$
5 / 17 / 63
$$

note that seer prom (4) $\operatorname{Im} 164$ same theta than fin 3 seenfons(3) g in 1 is letter than g in 3
at this 0.32 of peak in (4), find
form (1) value in (1) drops below value ni (3) between $T=0.30$ \& 0.32 and remanis below from then on value in (3) drops below value in (4) or (2) between $T=0.42+0.44$ and stop below.

$$
\begin{array}{r}
c_{i} \mu_{i j} \leqslant g_{i j}=g_{j i}=c_{j} \lambda_{i j} \\
c_{j} \mu_{j i} \\
\lambda_{i j}=\frac{g_{j i}}{c_{j}}=\frac{c_{i}}{c_{j}} \mu_{i j}=\mu_{j i} \\
\lambda_{j i}=\frac{g_{i j}}{c_{i}}=\frac{c_{j}}{c_{i}} \mu_{j i}=\mu_{i j}
\end{array}
$$

Suppose couppotumen (4) hosboth its coprocity aylitel ${ }^{9} 34$ charjed in some
Then λ_{34} remañs unebuerget bir $\lambda_{4,3}$ is changed by foctor
(3) When (4) in changel, $q=V / C$, nolonger gnes V. Need Kappa to moke compersble.
$73 / .002$ Corrected mextpoge $5 / 20 / 63$

$$
.4 \quad \text { ル } 11 \quad \lambda_{4,3}=4.4
$$

. 9 nominitition, lent $\lambda_{i j}=25$

$$
\text { peok in } 4
$$

fan (1)

$$
\begin{aligned}
& 5.6705 \\
& 6.164
\end{aligned}
$$

$$
\begin{aligned}
& 6.164 \\
& 6.638
\end{aligned}
$$

$\operatorname{jin}(4)$

$$
\begin{array}{r}
\lambda_{4,3}=3.6 \\
\\
4.0 \\
\\
4.4 \\
\lambda_{4,3}= \\
3.6 \\
4.0 \\
4.4
\end{array}
$$

$$
5.69
$$

$$
6.164
$$

$$
6.617 \text { at } T=0.30
$$

Fiots intuitine expectations, bit there are thace idfect.
(1) 4urs clarged withon compeusatory change rin (2) to kesp tatal sized system constanl
*(2) Conpenstory charges in should

$$
\begin{aligned}
& 931.002 .1 \text { I.C.in (1), } g=5 \mathrm{~m}(1), \lambda 4,3=3.6 \\
& \text {. } 211 \quad 11 \quad \lambda_{4,3}=4.4 \\
& .3 \quad \text {. } 3 \quad g=\sin (4), \quad \lambda, 3=3.6
\end{aligned}
$$

* Success ful jughh of comprotinan
Sozes. sizes.

Results

Peak Q_{4}	$P_{\text {eak }} K_{4} * Q_{4}$	Pede Q_{3}
5.548	6.164	12.466
6.78 .1	6.164	12.266
5.310	5.90	down 0.264
17.044	6.403	1793
2.186	4.372	0.24
	at $=0.26$	17.487
		17.516

i.e lorger of insualler compo is mose effective

Setyp 131.011 etseq . To provide That (a) $\lambda_{43}+\lambda_{23}=2 \lambda_{13}$
$\begin{aligned} \text { do thishy selting } \lambda_{43} \text { factorn } & =0.9001 / \mathrm{l} \\ & =101020.9\end{aligned}$

$$
\begin{aligned}
\lambda_{43} \text { factor } & =0.901 / 01 \\
\lambda_{23} & =1.1000 .9
\end{aligned}
$$

(b) whon $\lambda_{4,3}=0.9$, g in (4) shavel be 5.56

$$
K=1.111
$$

C)Kappa aljutit
to side $V_{i}=K_{i} Q_{i}$
toghde $V_{i}=K_{i} Q_{i}$

$$
\begin{aligned}
& K_{i} Q_{i} \\
& \text { Whon } \lambda_{4}=1.1, \quad \lambda_{14,4}=5.54 \text {. } \\
& K=0.9091
\end{aligned}
$$

$k_{2} q_{2}$
$\begin{array}{lllll}6.164 & 731.011 & 0.9 & 1.1 & \lambda_{11},\end{array}=6$ 。
$\begin{array}{lll}16.144 & 931.012 & 1.1\end{array} 0.9$
$\begin{array}{llll}731.013 & 0.9 & 101 & \lambda_{14,4}=6.555\end{array}$
$\begin{array}{llll}10.59 & 731.014 & 1.1 & 0.9\end{array} \quad \lambda_{14,4}=5.545$

$$
\begin{aligned}
& \operatorname{for} \lambda_{43}=0.9 \text {, ned } K_{4}=1.111, K_{2}=.9091 \\
& \operatorname{for} \lambda_{43}=1.1, \text { nod }\left(K_{4}=.9091, K_{2}=1.111\right.
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{i i}=\lambda_{0 i}+\sum_{j \neq i} \lambda_{j i} \\
& \lambda_{0 i}=1+\varepsilon_{i}+g_{i}
\end{aligned}
$$

But $\left.\varepsilon_{i} \propto \lambda_{i, \text { sonce }}\right\} \begin{aligned} & \text { sole ouly whon all } \\ & \text { coupstanto are } \\ & \text { equal }\end{aligned}$ $g_{i} \propto \lambda_{i}$,ssike $\}$ couputuluts are
2.g. Suppose (i) is mode haf normal sige

Then, if wormally, λ_{i} isame $=\varepsilon_{i}$
now λ_{i},sonce $=\frac{1}{2} \varepsilon_{i}$
dequileme nelation

$$
{ }_{i o} \lambda_{0 i}=1+(2) \lambda_{i, \text { samice }}+(2) \lambda_{i, \text { sink }}
$$

and this istine whether or not we decude to double ε_{i} to keep $\varepsilon_{i} \circ \neg A_{i}$ constonl.

Glso, noed $K_{i}=2$. for this cose See 6/26/63) tabbed proze-
$\left.\begin{array}{rl}\text { Summery } 731 & .001 \\ & .002 \\ .011-.015\end{array}\right\}$ Series
all these series were with I. C. in (1) $($ not ε pulse $)$ also $\beta=0$
Ho with four cots of equal size, fin (1) If in (4) are precisely equally effective as seen in (4).
B. This symunctry would he destroyed liny replaniz

C. This synuvetry would he destroyed boy moleng
(NO) $\beta \neq 0$, ie. E $\quad \neq E_{r}$, because then need sis compertions. Sym ing sill O.K., it seams. Better try this Confirmed by 73/.204 and 731.205
D. Reason why λ in 3 is less effective may he that resting $\lambda_{33}=13$ compared with $\lambda_{11}=\lambda_{22}=\lambda_{44}=5$.
Thus $\Delta \lambda_{0 i}$ of 5 is smaller proportion in (3) than in Thus $\Delta \lambda_{0:}$ of 5 is smaller proportion min (3) Than in . (1) OE (4). Whither words, there is a markedly different effect upon the eigenvalues. However, In 2 , nest gone same eigenvalues a yet gives very different peale. \rightarrow see 731.301

Whight porto check this by mahnoz $\lambda_{13}=\lambda_{23}=\lambda_{43}=4$ $\lambda_{31}=\lambda_{32}=\lambda_{34}=12$ But This asomohes (1) (2) (4) one third the size of (3) and it
Avolue is same, g AA milt the this as great in (3).
E. When compartwent (4) was mode suvaller of (2) conpensator illy larger.
This had no iffect for if in (1), provided that correct Kappanasusel for (4).
for of in (4), when bues nicreased to make, is $\triangle A$ confont. The offes of A ~n smalle? compartinn ubas gseatr intitition than for the nownal size cpt.
Conversely ifor (4) farger thar nomul of of conespording smaller the nutitition was lens effectine.

$$
\beta=-0.1
$$

Pradem(1)	Praleni(3)	Pedrin (4)
49.45	15.81	10.30
31.24	9.64	5.26
49.06	13.68	-0.08
47.6	7.62	4.05
49.26	14.66	0.3637

731.100 Series sum $5 / 24 / 63$

Since Crt. (8) set at 100.
suite fo. (9) se at -10°
also, set $\lambda_{11,1}=1+\lambda_{1,8}+\lambda_{1,9}$
which is O,K. as long as pts ore of equal size
otherwise, need to use factors to convect for $\lambda_{1,8} \neq \varepsilon_{1}$ ant $\lambda_{1,9} \neq g_{1}$
$\begin{aligned} & 731.101 \text { Control: } \varepsilon=5 \text { in (1) for } \Delta T=0.25 \\ & \text { nominituhion }\end{aligned}$
$731.105 \quad \alpha=5$ min (1) sustained with $\beta=-0.1$ eft (1) went negate for $T>0.5$
$731.104 \quad g=5$ ir (4) sustained with $\beta=-0.1$
$731.103 \quad g=5$ in (3) suitamed with $\beta=-0.1$
731.102 goop value of $f=2.5$ in (4)

Should redo with $\beta=0$ क $\beta=+0.1$

Set up 731.111-731.116
all hove ε prese in (1): alecits. equal all Kspparsenovied
$731.111 \quad g=5$ in (1) with $\beta=0$
$731.113 \quad g=5$ in (3) with $\beta=0$
$731.114 \quad g=5$ in (4) with $\beta=0$
$731.115 \quad g=5$ mi (1) with $\beta=\neq 0.1$
$731.116 \quad g=5$ in (4) with $\beta=+0.1$
(e.tis) (17\% (11) $\quad ~ g=5$ mi (3) with $\beta=+0.1$
*T These two sernitt confirm the frediction That I in (1) ig less (4) withe \& pulse ni (1) $(B=0)$ atthough for I,C. in (1) these two of
locations are civally bpectave. .onon athough for I.

His is an incompleterffort to examine the Affect the $\lambda_{33}<\lambda_{11}=\lambda_{4} 4$ Soon all compartments are equal.
a Letter method woald be see two pages farther on
 hos smaller Ai then its immediate neighbors.

Peaknis (3)

$$
\begin{array}{rr}
28.45 \text { at } T=0.08 & 7.269 \text { af } T=0.2 \\
1 . \quad 68.125 \text { at } T=0.08 & 6.875 \text { at } T=0.18 \\
37.1 \text { at } T=0.12 & 7.269 \text { a } T=0.2 \\
33.54 \text { at } T=.10 & 8.886 \text { at } T=0.22
\end{array}
$$

Order as expected

Set wp $\underbrace{731.031-731.035}$ and 731.201
Here sestore $\lambda_{4,3}=\lambda_{2,3}=\lambda_{1,3}=4$.
and make $\lambda_{3,1}=\lambda_{3,2}=\lambda_{3,4}=(3). * \lambda_{1,3}$
$=12$.
This shoued made $\lambda_{11}=\lambda_{22}=\lambda_{44}=13_{0}=\lambda_{33}$
Net urnig Keppan
all hove I.C. in (1)

$$
\begin{array}{ll}
731.031 & y=6 \mathrm{in}(1) \\
731.033 & g=6 \mathrm{mi} \\
731.034 & y=6 \mathrm{~m} \text { (4) } \\
731.035 & y=2 \mathrm{in}
\end{array}
$$

1 ta couppenate for compunturar
(3) beng three tinnes os le le rese oas 1 ($2+14$

Tworked, lunt did not get st. st. volues
6/4/63 Talked with Marj
Sti Sti nat of mozrom ignores mifial conditions.
But if want st.st. volues nall'citle, need to specefte inflon In this case, cpt. 4 woned thare niflow $\Rightarrow=50$.
is. $(5)(-10$.
Plan to use (6) summer for (1)
(7) as sumer for (4)
adjust $\sigma_{6,9}$ to gonejstist. (1) from (9)
(1) $\sigma_{7}, 9$ at 5 , 7
for 731.202 mintit (4) gooled
731.203 miniot (1) O.k., got meassuny st st.

204 minty 205 reslits minitial st-st-
205 minmit(1) 1111 11 Yue

$$
\text { St.st. } \begin{aligned}
& -6.6,-4.0,\left\{\begin{array}{l}
-3.2 \\
-3.2
\end{array}\right\}, ~
\end{aligned}
$$

$$
5 / 31 / 63
$$

S Seek steady stote information
: avoid cipta 11, 12, 13, F 14 use out lamblas nistead.
\therefore No curpts is set at 9
9 is set at $-10 ., \frac{a l s o ~ s t . s t . a t ~}{10} 10$.
hopethin loplo to other st st
suforpatior, as built
iuporpatior, as binit
in Mowes.
also, use $9_{i, i} 7$ as a summer and sunce donot yet hnour st st. belve of (4) let (7) gire Q(4) - $\sqrt[3]{9}$)

$$
\binom{\sigma_{4,4}=10}{\sqrt{\pi, 9}, 9} \text { latter, wan (7) to gove }(4)-(55 t, 8) 4
$$

This is modect to last demonstrale The symuetries for of with $\beta \neq 0$ ant I.C. mitescharge with obs.pt. futhis notlem, all comparthents are of equal size!

$$
\therefore \lambda_{0,4}=6 \cdot ; \lambda_{4,9} \equiv 5 . ; \lambda_{0,9}=-5 .
$$

$22 m$
Qor(5) peck $=4.940$ ot $T=0.36$
(2) (4) peak $=5.58808$ at $T=0.38$
(3) peah $=5.57864 \quad$ a $\quad t=0.40$

withot 8 attabel. (3)
731.301

To test hypethesis that g is more effictivive when $\chi_{i t}$ is sumaller becuse less junctional.
(1)

Put F.C.in (1)
(2)-(6)
(3)

Obsenve in (5)
(5)- -8
(5)

Use of with $E_{j}=F_{r} \quad(\beta=0)$
Predut that g in (1) of in (5) are most effectro d equally so.
Predict that 8 in (2) \& 8 in (4) will he equally effecture, but les effocture than of in (3) becouse (3) does not have a side compastivent.
Here mode $\lambda_{i j}=16$.

$$
\begin{aligned}
\therefore \lambda_{11} & =\lambda_{55}=17 . \\
\lambda_{33} & =330 \\
\lambda_{22} & =\lambda_{44}=49 .
\end{aligned}
$$

Pretiat $y=5$ would be more effectins in (3) than min (2) (4) Buod how abou $g=16$ or greater ? on $y=5$ wht $\lambda i s=4$

$$
\lambda_{6,7}=\lambda_{5,7}=\lambda_{1,5}=\lambda_{2,5}=\lambda_{3,6}=\lambda_{4,6}=0.625
$$

OThen $\lambda_{i j}=1.25$
cos before.
Bur for $g=2 \mathrm{in} 1,2,3,0,4 \quad \Delta \lambda=0.1$
conpardele $\partial=1$ in 5 or $6 \quad \angle a=0.05$
congerste $\partial=1 / 2$ in 7,8 or $9 \quad \Delta \lambda=0.025$
also, $\lambda_{1,10}=0.025$
fon this is mportan ouly if connes source also to other corpastments.
$722.532-535$
These were Rum May $22 \& 27$
Piuspore was to correct 722.500 seriea for eartier failure to cossect volues of g accordny to size of compartwont.
all hove Eruase in (1) $(\varepsilon=2)$ or I. C. mi (1)

$$
722.533 \mathrm{~A} \quad \eta=1 \min (5)
$$

$$
B_{B_{1} I B=\frac{1}{2} \dot{m}(7)}
$$

$$
\text { cim. } y=2 \operatorname{mi}
$$

1.5016
$(1.5286$
(1.5839)
1.5239
1.5249
(1.7067)

$$
\begin{aligned}
& 722.535 \text { A. } \ddots=1 \text { mi (6) } \\
& \text { Bi } \theta=2 \text { m (4) } \\
& \text { C. I.C. } g=1 \text { mi (5) }
\end{aligned}
$$

$$
\begin{aligned}
& 1.55012 \\
& (1.5585 \\
& (1.676)
\end{aligned}
$$

liter
722. 536 A. $\varepsilon=1 / 2, \quad y=\frac{1}{2}$ in $1,2,3,4$
$B_{r} g=\frac{1}{2}$ mi 9 wh $\varepsilon=2$ m- 11
$C_{1} g=\frac{1}{2}$ i. 9 and
c. $g=\frac{1}{2}$ ~i 9

$$
1.772
$$

secol20 533, 538, loter (6/26/63)

This wiv of in 722.239 7/1/63
Then of lecome nore effective in (7) than in (5) This done fer equal cpis.

(5) heats 8 becouse more conc. $), ~ \triangle A / \lambda$ irlanger (2) minined lecause moricone.!

SFill some puzzles here 7
722. 532-535 Summany

$$
\begin{aligned}
& K=0 \\
& \varepsilon=2 \text { in (1) for } \Delta T=0.25 \\
& g \text { is sustained at different sites }
\end{aligned}
$$

Ordertter is $1,5, \sqrt{2,8,7} \sqrt{6,4}$
Crlani 722.200 sarios wro 1, 8, 5, 7, 2 (Equal git. Size)
Fuboth series (1) is first probibly becanse λ_{11} is suallest (5) is bether thon (7) why Pa Aergher lood $\log (6,3,4)$
(8) is litte thon (7)

Note: SJodely statbs giren kelow roch peak in fancil
A An these coses, where of Eare both at (1) althorgh ε is for $\Delta T=0.25$ and g is)
it is as thangh $\varepsilon=10$ durning $\triangle T=0.25$ with Source cpt $=100(1+\beta) / 2$
corsequently, peek mi (1), which occurs of $Y=0.25$ as laffectod only hy thin, and

$$
\begin{aligned}
& \text { is } 10 \% \text { hisher } f o s=+0.1 \text { than for } \beta=0 \\
& 10 \% \text { lover }-0.1 \text { in . } 1 \text { is }
\end{aligned}
$$

Howear peahs in (3) 4 (4) occur later pedrin (3) ocuiso
(4) $T=0.40$ to 0.50
and these must now he rsfersed to stistospfoctofg Effor in (3) \& (4) is mone than 10%, but is is samedurict than or bofore. greatr fecansed more time to act

Summary of 731.100 series
$6 / 3 / 63$
to date.

$$
731.101-731.116
$$

Epulse in (1) with Gpt. 8 set at 100
Ilocation of $\beta=0,+0.1,-0.1$
Peokin (1)
(3) $41=0.25$
(4) $\mathrm{H}=0.25$

Peokin (3) Pedemi (4)

$$
\begin{aligned}
& \begin{array}{cccc}
\text { Contral st. } & 49.45 & 15.81 & 10.30 \\
\operatorname{gin}(1) \text { } \beta=0.11 & 34.71 & 0.6410 .9 & 0.746 .163 \\
& 0.7 & 0.6 & 3.74 \\
\hline
\end{array} \\
& \begin{array}{llllll}
11 & \beta=-0.1 & 31.24 & 9.572 & 9.64 & 3.37 \\
-1.2 .26 \\
-4.0 & -3.6 & -3.2 \\
\hline 10.18 & & 12.16 & 4.127 .165
\end{array}
\end{aligned}
$$

Note: for both $\beta=0$

$$
+3=-0.1
$$

fin (4) is more effective thon fin(1) when oles. in (4)

$$
\begin{aligned}
& \text { fo } \beta=0 \text {, thir intocouse of youn liveor } \\
& \text { for } \beta=-0.1 \text { pimailydue to affec of } \beta \text { sinte. }
\end{aligned}
$$

Comparing 731.116 with 731.114 phys 731.118 shoves almost perfect summation in pts (3) (4) pretty dose in git. (1)

Note: that $\lambda_{0,4}$ is equal to 5 . in all three of there
The difference is that the Appulse is present in 731.114 withow $\beta=+0.1$
Wheres $\beta=t 0.1$ withofe the Equelse in 731.118

Sunmery 731.100 Series Contrinud

Various interpretations of four cpi. System

Pypmidal Gl

ह3) $(p, 5$

)
\square .

Results 731.204
731.205
Tour compaction system with $\beta=-0.1$ Verified that transient is not affected by B provided that login with Steady Stall and use summer to measure transit compartmental values rel. to ST. ST.
(1)
(3) (2)

St. St. voles weredtained from 731,203 ail are here confirmed.
(4)

Then ST. St vahesare: $\begin{array}{ll}(1)+2 & -3.2 \\ (3) & -4.0\end{array}$
Copfinimed dy 931,204 .

$$
\begin{aligned}
& -4.0 \\
& -6.6
\end{aligned}
$$

These values arouse ad I.C., exact that in (1), $I \cdot C_{0}=90-3.2=86.8$

Note that transien in (4) is entirely neg. However, transien in (7) [is (4) rel to st. 5t.] agrees eyactly (6significan figares) with (4) of 731.001 .4 which is the some problem for $\beta=0$, with I.C. of 90 . in (1) of zero elsewhere. Similary (5) agrees exatty with (3) of 731.001 .4
Qlso, becouse of synnanctry lotwoen 73100010 ath 331.001 .4 ,
art 731.204 ad 731.205
Ci. (7) hare agreesalso with (7) of 731.205 ant with opt.(4) in 731.001 .1
for $g=5$ in (1)
731.204
I.C.
(1) 86.8
(2) -3.2
(3) -4.0
preestoblishal
weotabluskal St
(4) -6.6
sustained

Soinkcompartuen (9) setat-10. $\beta=-0.1$
Summer (7) desojued to give (4) +6.6

$$
\therefore \sigma_{7,4}=1.0, \sigma_{7,9}=-0.66
$$

Sumner (6) desigud togire (1) +3.2

$$
\therefore \sigma_{6,1}=1.0, \sigma_{6,9}=-0.32
$$

Sumer (5) desiguid to gone (3) +4.0

$$
\therefore \sigma_{5,3}=1.0, \sigma_{5,9}=-0.4
$$

$\operatorname{Pak}(1)=86.8 \quad$ a $=0 ; \operatorname{Peok}(6)=90$.
$\operatorname{Prolk}(3)=13.49$ at $T=.16 ; \operatorname{Peck}(5)=17.49$
$\operatorname{Redr}(4)=-0.435$ at $T=0.32 ; \operatorname{Ped}(7)=6.164)$

$$
\operatorname{Peok}(2)=+7.33 \text { at } T=0.42
$$

Thia verifies, to six sig. fisures, That, ducto of meaured rel. to pre-established st. st., are the sante egasilles of β volue. The sfoy of 'g upou the "out lomida" must of course he the somk, Io fhe syime to be

$$
1.0-=8
$$

Trousient in(7) ogrees with (4) of 731.001.1 and of 731.001 .4
adwoth (7) of 731.204
Alro (5) agres with (3) of 731.001 .1
att (6) ogreeswith (1) of 731.001 .1
all these agreemants for 6 sig. fogures
731.205
I.C. (1) 83.4
(2) -3.2 meate theibail st.st.
(3) -4.0 $y=5$ in (1)
(4) -3.2
sumk cpt.@ set at - 10 .
Sumuer (7) goves (4) +3.2

$$
\therefore \sigma_{7,4}=1.0, \sigma_{7,9}=-0.32
$$

Sumuer (6) gores (1) +6.6

$$
\therefore \sigma_{b, 1}=1.0, \quad \sigma_{6,9}=-0.66
$$

Sumarer (5) gives (3) +4.0

$$
\therefore \sigma_{5,3}=1.0, \quad \sigma_{5,9}=-0.40
$$

$$
\begin{array}{ll}
\operatorname{Peak}(1)=83.4 \text { at } T=0 & \operatorname{Peak}(6)=90 . \\
\operatorname{Reak}(3)=8.466 \text { at } T=.1 & \operatorname{Reak}(5)=12.466 \\
\operatorname{Pak}(4)=2.964 \text { at } T=0.32 & \operatorname{Pek}(7)=6.164) \\
\operatorname{Reak}(2)=2.964 \text { at } T=0.32 &
\end{array}
$$

$$
1.0-=6
$$

$$
01-\tan _{2} \tan \tan \text {. }
$$

$$
S E D-=p R_{0}, \quad 0.1=,+0 \therefore
$$

$$
(0.8+(y)+6 a n g(y)
$$

$$
2 D_{0}-=p, 8 \quad 0.1=1.0 \therefore
$$

$$
1.2+(1) \cos (9) \text { sanuen }
$$

$$
\text { Lesedx. nesper }=(8) \operatorname{sen}
$$

$$
\begin{aligned}
& (1)-2+2 \\
& 5 \cdot \varepsilon- \\
& J-\cos +0 \\
& 0.45
\end{aligned}
$$

731.2048205

Two general conclusions from this experiment
A. Rel to St. st. effect of 9 ,
effes of on Stronvient is independent of β 。
Whether this istrus also for E pulses will be checked ont in 731.121

$$
731.124
$$

(seeraxt page)
A predict That it will he the, beconse $\beta=0$ compare the save $\varepsilon-g$ initefremce in N_{0} !
B. compartment (d) as $\beta=-0.1$ answer see two pozain
Regarding membrane potential $\beta=-0.1$ hos the most effect when "is at the recording site, or fictionally the trigger zone. This is sustained g. presmacly even more time for

Setup $73 / 0121$

$$
.124
$$

Begin with two decks from 731.100 series However, Compartments (11), (12), (13), (14) hone been Converted to Summers
They are nolonger collecting compristinents. "Cut lambda'" have been restored, and mode dependent upon $\varepsilon t y$?

$$
\text { is. } \quad \lambda_{0, i}=1+\lambda_{i, 8}+\lambda_{i, 9}
$$

Also St. St initial conditions bone been introduced, and a st.st.mflow hos been entering to chide this.
forthisreasen $\lambda_{1,9}=50$ in 731.121

$$
\text { and } \lambda_{4,9}=50 \text { in } 73 / .124
$$

miorker that connect λ oivoild be used in The ST, St, calculation.

Capporitly the offect of thitial Contitions upon the enulse prerents (14) from agreeng with (4) of 731.111 and 731.114 $6.163 \quad 565$
I.C. osetat st.st.
$731.121 \quad=5$ in $6 / 24 / 63$
O $=5$ m sustame $\beta=-0.1$
Epulae in (1) square
Peak in
(1) 30.4045
(II) 3%
(3) 7.619
(13) $11.62 \quad .30$
(4) 3.37
(14) $6.57 \quad .45$

These alt num langer Ther- $\alpha \beta=00_{13+111}$
$731.124 \quad g=5 \operatorname{in}$ (4) sustowied $\beta=-0.1$

Prokini (1) 47.80
(3) 11.8
(4) -.87
(2) 6.72
(11) $57.0 \quad \frac{T}{.25}$
(13) $15.8 \quad .30$
(14) 5.73 . 45
(12) $9.92 \quad .55$
there vorues all rum Canger than cose for $\beta=0$
731.114
$y=5$ in 3 is nore Iffectine than in (2) or (4)

Unarpeted degenera cy for on an (2) (4) when obsertl(4) with F.C. in (1)

Results of 731.300 Series 6/25/63

$$
j=5 \text { in (3) is losseflectine tham in (2)or(4) }
$$

731.305 similarto 231.304

Obseme in (4)
I, C. in (2) for every cose Coutral vithong is 8.43 at $T=0.32$

Olocation	Pook Ampl.	Time
(1) $($ brom 304)	$(1.484$.24
(2)	6.606	.22
(3)	6.482	.30
(4)	6.606	.22
(5)	7.484	.24

Ini(3) io most offectrie
Terpe ageemor for g in(2) or (4)
or for y in (1) or (5)
Degeneracy con firmel
ththin dey enoy 10 moxpected

$$
\begin{aligned}
& \text { for I.C.in } 1,2,3,4) \\
& f=1 / 2 \min (5+6) \text { or } \quad y=1 / 2 \min (8)
\end{aligned}
$$

gone precisely the same trousient m 8

$$
722.538
$$

This is an interestmi degenerocy sind lar to that of $731: 304$

Corjecture on geveralization of same l.g.
I.C. ni (1)
(3)
(4)
obsone (5)
degenero oy for fini $\left\{\begin{array}{l}(2) \text { or (5) } \\ 3) \text { or (4) }\end{array}\right.$
(6) Aejneednot be equal
(6) Aijneed not be equal
Culy require $\lambda_{12}=\lambda_{65} \neq \lambda_{21}=\lambda_{56}$
oftromal

$722.536-538$

$$
K=0
$$

oblgual

$$
\varepsilon=1 / 2
$$

Square Epulse in $(1,2,3 \times 4)$
Observe peate in (8)

$$
\begin{array}{lll}
722.536 & z=1 / 2 \text { in } 1,2,3+4 & 1.5970 \\
722.537 & z=1 / 2 \text { in } 5+6 & 1.61047 \\
722.538 & \partial=1 / 2 \text { in } & 1.61411 \\
722,537 & z=1 / 2 \text { in } & 1.61024 \\
722.538 & z=1 / 2 \text { in (9) } & 1.62583
\end{array}
$$

I mont effectrae in 1234 becaure (8) is nst an end cpt.

(fo I.l, in 1,2,3,4 trise oogsee eyactly)
Inir owly slogntly less effective, purmolly
In mi (9) least effectore becense othe side of (8) from semee
$80(25 \cdot 2$$\Rightarrow 1$
$8 \varepsilon 己$

- $\sec +\frac{2 c c c}{}$

(8) max 5) $23+(x+0.5$

NPC.
「Poitil
Pres (2melta 0 .ace. ast

Hesolbat
8) in $51=?$

Phatin alel?

 whores.2. in. 5.I

Restate definitions to he consisten with proplems havnoy unequal compartments. Re ejai leper

$$
\dot{v}_{i}=\sum_{j}^{1} \mu_{i j} v_{j}+f_{i}
$$

where $\varepsilon f_{i}=\varepsilon_{i}+\beta g_{i} \quad$ (indhome pelititater)

$$
\begin{aligned}
& \mu_{i i}=-\left(1+\varepsilon_{i}+g_{j}\right) / \varepsilon-\sum_{j=i}^{1} \mu_{i j} \\
& \left(\mu_{i j}=\frac{q_{i j}}{c_{i}}=\lambda_{j i}=\frac{c_{i}}{c_{i}} \mu_{j i}=\frac{c_{i}}{c_{i}} \lambda_{i j}\right)
\end{aligned}
$$

$$
\begin{aligned}
\dot{q}_{i}=c_{i} \dot{v}_{i} & =c_{i} \sum_{j} \mu_{i j} v_{j}+c_{i} f_{i} \\
& =\sum_{j} \lambda_{i j} q_{j}+\lambda_{i, s} q_{s}+\lambda_{i, q} q_{9}
\end{aligned}
$$

where 8 sepers to source comprestiment
and

$$
\begin{aligned}
& q_{8}=c_{8} * \text { falefactor }(\text { eg. } 100) \\
& \lambda_{i, 8}=\frac{c_{i}}{c_{8}} * \varepsilon_{i} \\
& q_{9}=c_{9} * \text { Salefoctor } * \beta \\
& \lambda_{i, 9}=\frac{c_{2}}{c_{9}} * g_{i} \quad c_{9}=c_{8}
\end{aligned}
$$

Why not use Kappas as reciprocal capacity
$\left.\begin{array}{rl}\text { let } \lambda_{i, \text { te I }} & =\varepsilon_{i} \\ \lambda_{i, 110} & =g_{i}\end{array}\right\} \begin{aligned} & \text { This pules } \\ & \text { propitiation }\end{aligned}$ write $\lambda_{i, 8}=\left(\frac{1}{K_{i}} \lambda_{i, 5}\left\{\begin{array}{l}\text { limitations } \\ \text { too mush }\end{array}\right.\right.$

$$
\begin{aligned}
& \left.\lambda_{i, 9}=\left(\frac{1}{K_{i}}\right) \lambda_{i, j 10}\right) \\
& \lambda_{1,2}=\left(\frac{c_{1}}{c_{2}}\right) \cdot \lambda_{21}=\left(\frac{K_{2}}{K_{1}}\right) \lambda_{2 i}
\end{aligned}
$$

Then $\lambda_{0, i}=1+\lambda_{i, 7 a}+\lambda_{i, 10}$, sithetquiliut

When all compartments are equal $\frac{C_{i}}{C_{8}}=1=\frac{C_{C}}{C_{9}}$ and

$$
\begin{aligned}
& \lambda_{i, 8}=\varepsilon_{i} \\
& \lambda_{i, q}=g_{i}
\end{aligned}
$$

Otherwose, neal to use copaity ratios.
Problem, haw to build this in hy rveans of dependence selationss.
Iet conpartment 10 be empty
Let $\lambda i, 10$ opecify compty conpesimedus $\mathrm{s} / \mathrm{s} / \mathrm{Fe}$ wat a suth capto.
(5)
(6)

$$
\text { Specify }_{\text {nit }} \lambda_{2,1}, \lambda_{32,3,} \text { and } \lambda_{4,3}
$$

Tongyumitic situation,

$$
\begin{aligned}
& \text { Depentence reletions: } \begin{aligned}
\lambda_{5,6} & =1 * \lambda_{2,1} \\
\lambda_{1,2} & \left.=\left(\frac{1}{c}\right)^{2}\right)
\end{aligned}
\end{aligned}
$$

委 dividules (6) bin cus of (3) 4(4)
(1)
(5) (2)
A.

$$
\begin{equation*}
3.8406 \tag{9}
\end{equation*}
$$

B.

$$
3.8590
$$

loss offertinest (7) then of (5)
Note, degeraray rule would hone male thad equal if 9 were not prosits it it ithe aldition of (9) Whoith) miseem A88, whoch madres fsoglitelylers offectue at (7) then at (5) orif there were aw ther off. atled beyoul (1)
$a+b$
722.239 succerfulely run
equal apte, lut (6) ut क्यtpon (1)
Q 2 (3) 4
$\varepsilon=2$ in (1) squade
$A, g=2$ mi(5) surtained

$$
p a h=4.556
$$

$B \cdot y=2 \mathrm{~m}$ (7) Sustained

$$
\begin{gathered}
\text { c. } \pm . c \text { in (1) } \\
g=2=(7)
\end{gathered}
$$

This proves that for whole tree of mis) cues more efte oviv tran I ir 8
because (7) has a larger passine load.

Ej) (1)

$$
-\infty(x)
$$

$(6020+30$
$-2 \operatorname{con}^{2}+8(1)-5=3$

\qquad
\square

$$
y^{2 c^{3}} \cdot 1-5100+x
$$

$D S \rightarrow 11 \rightarrow$ nen

see 7/10/63 for results 1/1/63
Wrote on 6/22/63 731.321 to logir a systeniatic test of degeneracies where compantuguts are unequal, lint symunetrically arranged.

Twotests in One
(1)
(2)
(3)

$$
\begin{aligned}
& K=4 \text {. for }(1),(6),(11)+(16) \\
& K=2 \text {. for } \\
& K),(5),(12)+(15) \\
& K=1 \text {. for } \\
& (3),(4),(13)+(14)
\end{aligned}
$$

Qloo symation $\lambda_{12}=4_{0}, \lambda_{21}=8$.

$$
\lambda_{23}=60 \quad \lambda_{32}=12
$$

Prepared 731.401
Toleginito ter epsp +ipsp Summations for different locations, with $\beta=-0.1$

Source 8 set at 1.
Sink 9 set of -0.1

$$
\begin{aligned}
& \lambda_{15}=\lambda_{25}=\lambda_{36}=\lambda_{46}=\lambda_{57}=\lambda_{67}=40 \\
& \lambda_{51}=\lambda_{52}=\lambda_{63}=\lambda_{64}=\lambda_{75}=\lambda_{76}=8 .
\end{aligned}
$$

cell $\lambda_{0 i}$ except λ_{04} are mode explicitly dependent upon $\lambda_{i s}$ and $\lambda_{i g}$. The dependence relations incorporate the Rapper.
A. $j=5$. m (7) for $T=0$ to. 25 , there off

$$
B .\left\{\begin{array}{l}
E=4(2.5) \text { m } 10 \text { (} 1) \text { for } T=0 \text { to } .25 \\
g=5 \text { in (c) for } T=.25 \text { to. } 50
\end{array}\right.
$$

Thonoff.

Try

$$
\begin{aligned}
& \lambda_{41}=10 \\
& \lambda_{14}=(10) \times q_{2} \\
& \lambda_{21}=(10 .) \times q_{1} \\
& \lambda_{32}=5 . \\
& \left.\lambda_{31}=50 .\right)+q_{3} \\
& \lambda_{43}=2 .
\end{aligned}
$$

If remit are poor, consider putting in data and fitting parameters.
732.101 Begican to eyplore usc of q-dependence to mithic an infulse.

Chain

Each coto needs two amiliary epto to provide delays of monitonuy.

λ_{41} representer restuig leak (insuis mo not hen tosygtin) $\lambda_{21} \propto q_{1}$ wahes (2) a mon linear, ledar intersetor of (1)

λ_{32} deterninin tire contont of (2) 4 provider for prist portionof delayed rise ni (3)
$\lambda_{14} \propto q_{2}$ provides regenentine Na in cussentardey

If (1) \&(2) were wist.ste with $q_{i}=0.2$
then $k_{21}(.04)=k_{32} q_{2}$

$$
q_{2}=\frac{k_{21}}{k_{32}}(.04)
$$

as q_{3} begins to build up
$\lambda_{3,1} \propto q_{3}$ provides segenerstine Kant cunsart andog.

* could also hove $\lambda_{3,4} \propto q_{3}$, but decould not to use the first time
$\lambda_{4,3}$ determines de of \&f(3) H hance rel refract. period.

Below theothold

$$
\left(k_{21} q_{1}+k_{41}+k_{31} q_{3}\right) q_{1}<k_{14} q_{2} q_{4}
$$

keep this small meglisitle ticane $q_{3} \approx 0$ when qi le low thrashed
Suppose $q_{1}=0.2$ were just an threshold; $k_{41}=1.0$ Than $\left(0.2 k_{21}+1.0+?\right) 0.2 \simeq k_{14} q_{2} q_{4}$

Clade calculation
No. steps for time, $4 T$ seequald $(2).\left(\lambda_{j \text { jura }}\right)(\Delta T)+1$. No. o/ λ here woes $6 \lambda_{i j}+\underset{\text { mipluiat }}{4 \lambda_{1}}=10$. sritiolly this $(122)(.02)+1 .=2.41$ ≈ 4.
When $T=0.08$, there had been four $4 T$

$$
\begin{aligned}
\therefore\left[\text { (8.) }\left(\lambda_{j j \text { max }}\right)(602)+4 \cdot \times 10\right. & >3 \times 10^{4} \\
\text { or approx }(1.6)\left(\lambda_{j j \text { max }}\right) & >3 \times 10^{4} \\
\text { or approt. } \lambda_{j j \text { max }} & >2 \times 10^{4}
\end{aligned}
$$

This is a little puizhog, hiv suppose, for extreme core, $q_{3}=90$., then $\lambda_{31}=45 \times 10^{2}$, which is not enough.
Also, thurs system is closed \& should observe conarostion of mass. 90.5 how an arr compartment get more than

Moves say p that when non-hinear system blows up, This is precisely what does happen : conservation of masocan become grossly infruized by the iterative calculations. This mint bechecked by cooknig down The sypten and eyainiunz The sarky stops more finely. This is to he done with 732.103 .
732.101
actually set $\Delta T=.02, \quad N T=25$

$$
\begin{aligned}
& q_{1}(0)=0.5 \text { first, next } 0.1 \\
& g_{2}(0)=0 \\
& q_{3}(0)=0 \\
& q_{4}(0)=90 . \text { first, next } 90 .
\end{aligned}
$$

zeroitrations
neglecting dependence

$$
\begin{aligned}
& \lambda_{41}=1.0 \\
& \lambda_{14}=(10 .)^{2} q_{2} \\
& \lambda_{21}=\left(10_{0}\right) q_{1} \\
& \lambda_{32}=50 \\
& \lambda_{31}=(50 .) q_{3} \\
& \lambda_{13}=2 .
\end{aligned}
$$

$$
\lambda_{11}=-6 \%
$$

$$
\lambda_{22}=-5 .
$$

$$
\lambda_{33}=-2 .
$$

$$
\lambda_{44}=-10 .
$$

Diagnostics (1) set $\pm 10^{12}$ at $T=.02$
(3) \cdots
(4)

Lambdas * Steps exceed 3×10^{4} at $T=0.08$
Apparently blew up during iterations litwoen $T=0-1 T=02$ such that complication steps exceeded $3 \times 10^{4} \mathrm{hy} T=0.08$ Inotherwords, the amount in at least one counts became very laze, so that its qugenbut 7 became very loge, thus requiring very stall steps.

Inprogoon $\bar{X}=$ lergest $\lambda_{j j}$

$$
y y=\frac{1}{2 \cdot * \bar{Z}}
$$

$y=$ time interaal

$$
\begin{aligned}
\text { No.esteps for time } y & =\frac{y}{y y}+10 \\
& =y * 2 * * x+1 .
\end{aligned}
$$

Let us iterate 732.101 manually withow Rnge-Kutta to see how thing should go. use $\Delta t=\frac{0.02}{4}=.005$
Luitiolly, ned consider only $\lambda_{21}=(10).(.5)=50$

$$
\begin{array}{ll}
\lambda_{21} \Delta t=.025 \\
\lambda_{41} \Delta t=.005
\end{array} \quad \times .5=.0125 \quad \times .5=.0025 \quad \begin{aligned}
& \text { get. } q_{1}=.5-.015=.485 \\
& q_{2}=.0125 \\
& q_{4}=90.0025
\end{aligned}
$$

Neut step,

$$
\begin{aligned}
& \lambda_{41} \Delta t=.005 \times .485=.002425 \\
& \lambda_{14}=.125 ; \lambda_{44} \Delta t q_{4}=(.125)(.45)=.056 \\
& \lambda_{21}=4.85 ; \lambda_{21} \Delta t q_{1}=(4.85)^{2} \times 5 \times 10^{-4}=.0118 \\
& \lambda_{32} \Delta t q_{2}=(.025)(.0125)^{23.6}=.00031
\end{aligned}
$$

get $q_{1} \simeq .485-.014+.056$ $=.527$

$$
\begin{aligned}
& J_{41} \approx .0026 \\
& J_{14} \approx .1 \\
& J_{21} \approx .014 \\
& J_{32} \approx .0006 \\
& J_{31}=(.02)(.005)(.53)=.00005
\end{aligned}
$$

$$
q_{2}=.024^{\circ}
$$

$$
q_{3}=.0004
$$

$$
g_{4}=89.94
$$

get $q_{1}=.61$

$$
q_{2}=.038
$$

Next step

$$
\begin{aligned}
& J_{41} \approx .003 \\
& J_{14} \approx .17 \\
& J_{21} \approx .018 \\
& J_{32} \approx .01 \\
& J_{31} \approx(.05)(.005)(.61)=.00015
\end{aligned}
$$

Blow up is not obvious
got $q_{1} \approx .76$

$$
\begin{aligned}
& q_{2} \approx .046 \\
& q_{3} \approx .011 \\
& q_{4} \approx 72
\end{aligned}
$$

See $7 / 22 / 63$

$$
\begin{aligned}
\text { Here } q_{1}(0) & =0.1, \text {,he. } 0.4 \\
q_{2}(0) & =001 \\
q_{3}(0) & =.001 \\
q_{4}(0) & =100
\end{aligned}
$$

$732.102+.103+.104$
$7 / 9 / 63$
for 102 set up data for the cases: below, at tobowe the resh. called for iterations.
used diperen set of values: blew up.
Here $\Delta T=0.1$ and $N T=10$
(From who Moves says, this AT was mush too longe - because No Rune tuitta step size could not he readioited often enough, ie. orly ot these ST intervals

Celso, here set $q_{4}(0)=10^{3}$. Which was tor munch
Here $\lambda_{41}=1$.
$\lambda_{14}=(10.) q_{2}$ with range from 1. to 20.
$\lambda_{21}=(1.) q_{1}$
-1 10
$\lambda_{32}=5,0$

1. 10,
2. 20.

1.20.
$\lambda_{31} \geq(10)^{\prime} q_{3}$

$$
.2 \quad 10
$$

Soublas * Steps exceeds 3×10^{4} at $T=0.2$
Cots $1,3+4$ set et $\pm 10^{12}$ at $T=0.1$
Set uplel047 fo zero iterations, similar lambdas
Bo with $L T=0.005, N T=10$.
noobsened values
noobsened values
(.103) $\angle T=0.01$ NT $=10$
dependence elimniatefear trial

$$
\begin{aligned}
& \lambda_{12}=40, \\
& \lambda_{21}=80 \\
& \lambda_{23}=60, \\
& \lambda_{32}=12_{0} \\
& \lambda_{34}=16_{0}=\lambda_{43}
\end{aligned}
$$

Generalization ${ }^{\text {I }}$ for each I.C. location In (1) Or (6) gave degen ofscyt symito \pm an
II for Ficimi (1) or (2) luit not (3) If in (2)er (5) gives degen in both (5) f(6)
III for I.Cinir any loection. Ini (3) on (4) gives degen in (4)(5)+(6)

Rouelts of $731.321+322 A+B$
Testing Deseneracies.
$\operatorname{see}(7 / 1 / 63)$ for set-up
Sumnary of Reselts
I.Coin(1), g in (1) or (6) obsidentialthanient in (6)

731.322 Br reveded preasely same pottern for equal comprostmenta A squal Aij.

Clso mote: for $I_{0} C_{0}$ in (3) transini in (5) for \hat{y} in (3) or (4)
is sone as
housioni in (4) with J.C. in (2)

Problernsfor intuiction

Some in. (5)
same nul

obs \equiv oles 1

$$
\operatorname{dog} 5 \equiv \operatorname{des} 2
$$

same in (4) bu ${ }^{\text {not }} 5$ arl 6
III

Rerrm with I.C. in shafted to opp-ent: Aunter degen.

1212764
See pare 76 el Book 5 fria sefonce to a porouly relomit Mathinictical peyas ly COLAAR on "Cooss SymutricMatrios"

Hor cose where both purple of greer degenerocy apply. Ptrese à infoct 8 sets of conditions girng the same although to 88 represen misron minges of
Sorst fowr. First four rosult from Sonepair dare to IC. ICo

Degenerocies can le summarized as follows. forgin (3) or (4)

opt obeerved
priple refierent (IiCi oles)
green repreeent odditional due to og of

However, geen has appeanance of a shift * forgm(2) 5

	(1)	(2)	3
(1)		0	0
(2)	0		0
(3)	0	0	
(4)	0	0	+
(6)	0	0	0
(6)	0	0	0

oft-choened

These thre cores all phowed pretty good theshoed sffect.

$$
q_{1}(0)=0.1 \text { b } q_{0}(0)=0.3
$$

aund pretty good action potentials.
Ittencyto peak of. 108 voes opprox Lolf tha/fojpr Wasnot quite possove enougho $q_{1}(0)=0.1$ Therefore, for rext sun (732.109), increse A 41 to 2.0 and thy zero rtcralion for fone different initial conditionis: $q_{1}(0)=0.1,0.2,0.3,0.4,0.5$ for peranters smimiartón 7320108

(action Pot.)
Ampulse nodel, uaing Qdepentence
732.107 \& 732.108 were successful, billding ujam what wes leasned by difficuthos of 732.101-105 and partion sucarso/. 106
732.106 had initial estrinetes Ppramet wers
correct rel magnitudes, but too many were variable "O pe zinit nimproved fitt to The "data" poturts. ie. Tho mann degres offroedom \equiv fiting problem itl conditioned. \qquad

\qquad

* Yood

Setup
732.109
$\lambda_{41}=2$.
$\lambda_{14}=\left(\psi_{0}\right) q_{2}$
$\lambda_{21}=(20) q_{1}$
$\lambda_{32}=15$.
$\lambda_{31}=\left(20_{0}\right) q_{3}$
$\lambda_{43}=5$.
noiterations.
$I_{1} C_{1}=$
0.1 sun (1) diuast flat
0.2 pechel 1.016 at $T=.6$
0.3
0.4

0.5

50 .in (4) eoch time
Results showod that I..C. .n (1) but dod rise very sloglity.
got good series with peok larhir asud
Neuprevision should lock beak down more (Equleb-Pot.)

$$
\begin{aligned}
& \text { atteme to to withant(3) } \\
& 732 \cdot 110 \\
& c^{2} \cdot(3) \text { lore perovoserly } \\
& \text { as a dump. }
\end{aligned}
$$ as adump.

$$
\lambda_{04}=-\lambda_{14}
$$

$$
\lambda_{01}=2 .
$$

$$
\lambda_{14}=\left(\psi_{0}\right) q_{2}
$$

$$
\begin{aligned}
& \lambda_{21}=(2 .) q_{1}
\end{aligned}
$$

$$
\lambda_{02}=15 \text { ! }
$$

$$
\lambda_{31}=(40 .) q_{2}
$$

$$
\stackrel{(20.4}{\rightleftarrows} \text { ionterations }
$$

Tworterations
lost threshoed fhenom, promemally not ofecture ennugh, perkops alsolecme
4 now held 4 now held const. Masit he one of these becanse otherwise same at 109
Crucial to mabr λ_{31} derut on of 2

$$
\begin{aligned}
& 8 / 6 / 63 \text { ran } 732.111 \text {, } 0114 \text { \& } 0115 \\
& \text { mod. of } 732.110 \\
& \text { ie. vedued } \lambda_{14} \\
& \text { increesed } \lambda_{31} \\
& \text { basically ouly (1) +(2) } \\
& \text { (3) is a dimp. } \\
& \lambda_{01}=2_{0} \\
& \lambda_{14}=(20) q_{2} \\
& \lambda_{21}=(20) q_{1} \\
& \lambda_{02}=15 \text {. } \\
& \lambda_{31}=(100 .) g_{2} \text { rame } 50 . \mathrm{to}_{7} 150 . \\
& \text { Pterations yieldet (150)) } \\
& \text { ion max. pulldown } \\
& q 4=50 \\
& \text { Below Thash started to rise near } \\
& \text { eul. Probobly should nicreese } \\
& \text { the volue of } \lambda 01 \\
& \text { nuafbe alnd of A102 } \\
& \text { Alsospite did notcome } \\
& \text { down. Whynot? } \\
& \text { A cone doun in' } 732.110 \\
& \text { adjurtof to } 5.7 \\
& \text { choch urs too munch } \\
& \text { vicerese this to } 200 \text {. } \\
& \text { Thislost thesshold } \\
& \begin{array}{l}
\text { Nount } 732.1159 / 1663 \\
\text { with }
\end{array} \\
& \lambda_{01}=20, \text { rave } 1 . t_{0} 10 . \\
& \lambda_{31}=100 . \mathrm{g}_{2} \text {, sarge } 50.15 \text { 2006 } \\
& \text { went to } \lambda_{01}=1.847 \\
& \lambda_{3_{1}}=200.9_{2} \\
& \text { But this wore ued seably } \\
& \text { an impronement. } \\
& \text { It seems that need } \\
& \text { 4f: (3) as well is (2) }
\end{aligned}
$$

Thase λ were éshiniated from 732.109 whre $q_{4}=50$. and seak of q, wos not tied down
Bù not good evorigh
Nopttry $\lambda_{04}=-\lambda_{14}$

$$
\begin{aligned}
& 732.1131 \begin{array}{ll}
\lambda_{14}=(2000) q_{2} \\
\left.\lambda_{01}=4 .+\lambda_{14}+100\right) q_{3}
\end{array} \\
& 9 / 12 / 63 \\
& \lambda_{01}=4 .+\lambda_{14}+(100) q_{3} \\
& \lambda_{2 i}=(2 .) q_{1} \\
& \lambda_{32}=5 . \\
& \lambda_{02}=10 \text {. } \\
& \lambda_{03}=5 . \\
& \lambda_{31}=(10 .) q_{3} \quad \lambda_{11}=4 .+ \text { (1.) } \lambda_{H}
\end{aligned}
$$

$+(10.) \lambda_{3 i}$
$73201169 / 16 / 63$
trifogain with $\lambda_{14}=40$.
dut again got oneslour
$8 / 6 / 63 \operatorname{ran} 732.112, .113 \$.116$
Were, hetd $q_{4}=1.0$
Cimod to set may (squilob) $q_{1}=1.0$

$$
\begin{aligned}
& \lambda_{04}=-\lambda_{14} \\
& \begin{array}{l}
\lambda_{14}=(150 .) q_{2} \\
\lambda_{21}=(2 .) q_{1}
\end{array} \\
& \lambda_{21}=\left(2_{0}\right) q_{1} \\
& \lambda_{32}=4 . \\
& \begin{array}{l}
\lambda_{02}=(3 .) q_{3} \\
\lambda_{03}=5 .
\end{array} \\
& \lambda_{03}=\sum_{0}+(0.9) \lambda_{14}+\left(10_{0}\right) \lambda_{31} \\
& \lambda_{31}=(3 .) q_{3}
\end{aligned}
$$

This is for alditional quench.
$\dot{q}_{2}=(2.)\left(q_{1}\right)^{2}-\left(4_{0}\right) q_{2}-\left(3_{0}\right) q_{2} q_{3}$ neelomorelons Tronble due to foct that Q_{2} dependonce of $\lambda 14$ was mot corried aver to
(io. मog nama hindition)

Note that the ideas befrisal Thir A porel were developed sepinably Afurther in the followng sorie
WxR701C 8/5/63
WXR 703C 10/1/63
$\begin{array}{ccc}\text { WXR } 706 \mathrm{C} & 10 / 16 / 63 \\ \text { WXR } 707 \mathrm{C} & 1 / 7 / 63\end{array}$
wxr 707 C 1/7/63
WXR 709 C $11 / 19 / 63$
detaits are in other notebods \#3
$1118 / 63 \quad 732.125$ attenat to concert blow ip
$1119 / 63 \quad 732.126$ finally Acceded
in overcoming blow up
failure of 732.125 was due to fact That λ or dependent your λ_{14} lost the dependence of λ_{14} upon Q_{2} This was corrected in 732.126 which provided for

Could have had dou

QI

bit this wowed not hoveworked for λ_{0}, becousense their need a linear combination, hence, use λ_{51}.

$$
\begin{aligned}
& \text { for } \lambda_{31}=\left(10_{0}\right) Q_{3} \text {, got peak of } .7288 \text { at } T=.72 \\
& \text { adjusted to } \lambda_{31}=(19.7) Q_{3} \text {, got peace of. } 5744 \text { at } T=.54 \\
& \text { beconse of stiongerquench } \\
& \text { Whinchid come meanstofithor data }
\end{aligned}
$$

October 1963
Began 732.200 Series Brauchlet GE ant 732.300

PHR-Model-I
1 pheatrocoptor model

Notes left loose at the time
Today (5/16/66) still loose

Problem of usnig Mone's progrom formy rothens wher coupartments are not all of equal size.
Dofficultios orise in the prosent system becouse whon
λ_{i}, sance is quertared for quaster size gpt
Thon $\quad \lambda_{0, i}=1+\lambda_{i, \text { soncere }}+\lambda_{i, \sin k}$ depenlence selation chaygs $\lambda_{0, i}$ whon it should not.
The difficulty arises from the fact that λ_{0}, i multiplies q_{i} and:

$$
\lambda_{0, i}=1 c+\varepsilon+\eta
$$

quite indepenbert of size
where $\& \& g$ are per unt brea of mernhrone
Howerer, $\lambda_{i \text {, source multiplis }}$ qsonsee

$$
\begin{aligned}
& \text { Suppose } \quad c_{i}=\frac{1}{2} c_{j} \\
& g_{i j}=\frac{1}{2} g_{j k} \\
& \lambda_{i, j}=\frac{g_{i j}}{c_{j}}=\frac{1}{2} \lambda_{j k}=\frac{1}{2} \lambda_{k j}=\frac{1}{2} \lambda_{j, i} \\
& \lambda_{j, i}=\frac{g_{i j}}{c_{i}}=\lambda_{j k}=\lambda_{k j} \\
& \lambda_{i i}=\lambda_{0 i}+\sum_{j \neq i} \lambda_{j i} \\
& =1+\varepsilon+g+\sum_{j \neq i}^{1} \lambda_{j i}
\end{aligned}
$$

allo/wwich shoued the unoffected by sizg of i

When compartments are unequal ought to use Kappas to unttiply Q of smaller compartments where C_{j} is strand
Suppose $c_{i}=c_{j} / f \quad$ son $f=2$
then

$$
\begin{aligned}
& \lambda_{i, \text { source }}=\varepsilon / f \\
& \lambda_{i, \text { sunk }}=g / f \\
& \lambda_{i, j}=\lambda_{j, i} / f
\end{aligned}
$$

Bot then $K_{i}=f$
and also $\lambda_{0 i}=1+f * \lambda_{i \text { sane }}+f * \lambda_{i \text { sion s }}$
orfor 731.100sesies $\lambda_{11,1}=1+f * \lambda_{1,8}+f * \lambda_{1,9}$ etc
Rapes come let wen $26-1+26-2$

Use of drum with bey pruch
skospprig, duyliating talphabetipunchny.
ficlel midictad ou brum cerd ly sow of (+) trin
 of chative
$(-)$ infrist col off field produces skip of field.
(0) $\cdots . . .$. produces duplication
a sugle (0) duphicates a suigle col. field.

$$
\begin{aligned}
& \checkmark(0+1)=/ \begin{array}{c}
\text { is wede tor duplicte a field } \\
\text { if the first Nemper of the fird }
\end{array} \\
& \text { OAAAA - \#t }
\end{aligned}
$$

Does not antanaticalle puplicate and ship if A fild is empty.

		P_{1}	E		CONMIN	PROBLEM NUMBER	
$5 \longrightarrow 7$	$21 \longrightarrow 30$	$31 \longrightarrow 40$	$41 \longrightarrow 50$		$61 \rightarrow 70$	$73 \rightarrow 76$	80
		. 01	.98		. 98		3

ERROR MATRIX	PARIIAIS MATRIX	PLOT	$\begin{aligned} & \text { A-MATRIX } \\ & \text { BEFORE } \\ & \text { INVERSION } \end{aligned}$	INTERMEDIATE RESULTS		$\begin{aligned} & 0=P R O \\ & 1=I I N \\ & 2=E X P \\ & 3 \text { and } u \end{aligned}$	S 1 or 2 QUATION ULUTION SYSTEMS					PROBLEM NUMBER	
2	3	4	5	6	$10 \rightarrow 18$	49	50	55	60	65	70	$73 \rightarrow 76$	80
		4			OPIIONS								4

ATMAN - WEISS \qquad OF NIH - OR

\qquad OF NIH - MR

\qquad
INITIAL CONDITIONS

COMPARTMENT NUMBER (integer)		INITIAL CONDITION FOR COMPARTMENT (decimal)	$\begin{gathered} \hline \text { COMPARTMENT } \\ \text { SIZE } \\ \text { (decimal) } \\ \hline \end{gathered}$	STEADY STATE INFLOW RATE (decimal)	Probism NuMBER	(en-EN- TER E1" 1
4	5	$12 \longrightarrow 25$	$\xrightarrow{42}$ - 55	$56 \longrightarrow 70$	$73 \rightarrow 76$	78
2	6					0
	8	1000				-
1	0	1000.				
2	6					
PHiS -4.5	3-3. 9	WORK	FOR Computa	LOCPAM 9B		

Transfer rates for Compartments

$$
P_{j}=\sum A_{i} P_{i}+C
$$

DEPENDENT PARAMETERCOMPARTMENT NUMBER(integer)				DEPENDED-ON PARAMETER COMPARTMENT NUMBER (0,0 for a constant) (integer)				COEFFICIENT OF DEPENDED-ON PARAMETER OR A CONSTANT (decimal)	PROBLEMNUMBER	ENTERR
$\begin{aligned} & \text { Into } \\ & \lambda, \sigma \end{aligned}$	for	$\begin{gathered} \text { From (for } \\ \lambda, \sigma) \end{gathered}$		$\begin{aligned} & \text { Into }(\text { for } \\ & \lambda, \sigma, k) \end{aligned}$		$\begin{gathered} \text { From (for } \\ \lambda, \sigma) \end{gathered}$				
4	5	9	10	19	20	24	25	$27 \longrightarrow 40$	$73 \rightarrow 76$	78
2	6									4
		1	0		1	1	0	-10		5
	6									5
-										
\square										
-										
\square										
\square										
\square										
\square										
\square										
\square										
\square										
PHS-4583-7 9-63					WCRK	SHEET		ER PROGRA		

\qquad JF

Now model for pluotorecpptor kiñetics which embodies some of the spatio-taypord G_{E} notions of my dendictic tree wbdel.

$$
\xrightarrow{\text { light }} \text { (I) }
$$

This chain can represent light obrosption followed ly photochanical binetics, and or diffusion of resulting piallo transmitter substance which alters the G_{e} of corsesponding nembrane segnents simitar to dondritic cylindes

Contran to limitations of line ar syolims (deloy t slope) as emphorized lyy
Hodhin 4 tagins fuis con lave Hobghir i tifagins, fhis con liave
a delayed stop rose, just as my dondikequence $\frac{D-C-B-A}{}$

which will he here produced by the spread from (1) to (3).

Cleo, the slower decoy in (1) (2) (3) - Her log is is fum al off, would fit tuortas observation that a sualltas pulse is less effective then Than at rest.

Set up first test as follows

$$
Q_{10}=1.0
$$

$\lambda_{1,8} Q_{8}$ corresporis to liglit flux into (1)

Note: becouse $\lambda_{11,8}$

$$
\begin{aligned}
& \lambda_{12,8} \\
& \lambda_{13,8}
\end{aligned}
$$

mit he Qdepenbent fecamot use depeylonce relatronts to main tani Q_{8} constant as uzually do. Thergore, usetrick of making Q8 verylorge cushion/ and olso feed losses bock wito

Thus we will volke

$$
\begin{aligned}
& Q_{8}=100 \\
& \lambda_{11,8}=\gamma_{11,8} Q_{1}=\lambda_{8,11} \\
& \lambda_{12,8}=\gamma_{12,8} Q_{2}=\lambda_{8,12} \\
& \lambda_{13,8}=\gamma_{13,8} Q_{3}=\lambda_{8,13} \\
& \lambda_{0,11}=\lambda_{0,12}=\lambda_{0,13}=1.0 \\
& \lambda_{1,11}=\lambda_{0,11}+\lambda_{8,11}+\lambda_{13,11} \\
& \lambda_{11,12}=\lambda_{2,11}=\lambda_{i j}=\operatorname{sey} 4 .
\end{aligned}
$$

$$
Q_{10}=\text { loflt sonnce }
$$

$$
\lambda_{1,10} Q_{10}=\text { lightfluxinto (1) }
$$

probobly reed to add an intibitition or accomodation, could lymaking this follow op:(4), soy.

$$
\text { i.e. } \begin{aligned}
\lambda_{9,11} & =\gamma_{9,11} Q_{4} \\
\lambda_{9,12} & =\gamma_{9,12} Q_{4} \\
\lambda_{9,13} & =\gamma_{9,13} Q_{4}
\end{aligned}
$$

coulldeatuede more complictor
(A) Griol squarestep. $F_{1}-T_{0} \approx 0.2 \quad T_{2}-T_{1}=0.8$
(B) louger square step. $T_{3}-T_{2}=T, T_{4}-T_{3}=2$
\therefore in (13) wat four . 05 \& then 20.05 then $\frac{.025}{.5}$, followdly ${ }^{20} \cdot 25$
total $64+4=68$
in (1), (2), (3), (4) Fwo.l, ton. 1

$$
68+\frac{4}{2}(68)=3(68)=204
$$

Operating Suzgestions
(1) nain switch, (2) Rebase buttors, totestreadmess.

Tor moster information to he punched ing, Resp \{ antomatic skip ssuitch off.
it is uniecessary to disengage drum withprogram contol leor,
Tomporany Stop o/ operation: surtch off antonatie feed
before relesuis cand. bofore veleaniz cand.

For DrumCards
$(12)+(1)=(A) \quad$ to designate alphammeriffield
$(12)=(t)$
0 artonatue numericate nutac
$(0)+(1)=(1)$ dutaplicale alphanumeric
$(11)=(-)=\begin{gathered}\text { antanctic } \\ \text { Skip space and field inmedictety } \\ \text { adjacent. }\end{gathered}$
(2) is for leftzero print, i.e zero to left tofillfield.
(3) is for print suppession

Operating Sussestions
(1) main switch, (2) Rebase button, totestreadmess.

Tor master mpormation to be punched in, peop p \{ antomatic skip
it is uniecersary to dinengag dr surich off.
it is unveressary to disengage drum with program coutol lever,
Temporany stop of operation: surtch off antomatie feed bepore seliasnig cand.

For DrumCards
$(12)+(1)=($ A) to designate alphammerifield
$(12)=(+) \quad$ to dorignate muneric fold.
0 artonatue mumericate nuc
$(0)+(1)=(1)$ dutaplicale alphanumeric
$(11)=(-)=$ antanctic space and field inmedistety
(2) is for leftzero print, i.e zero to left tofillfild.
(3) is for primt suppersion

